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The approximation of functions by Miintz polynomials p,(x) =37  a.x*, ne N,
1s studied. Converse theorems are of special interest. Under certain restrictions on
the numbers £, e R, ve N, 0<Ay</, < - - «. it is shown that a “good” rate of
convergence of the error | /- p,ll|oq. as n— 7. implies the existence of a scries
fy=%7 o ze . absolutely convergent in a certain circular region
G < C,,, around the branch point zero whose restriction to the real interval [0, 1 ]
coincides with the given function € C[0, 1]. (£, denotes the Riemann surface of
the logarilhm) C 1985 Academic Press, Ing

[. INTRODUCTION

Let C[0, 1] denote the space of rcal-valued continuous functions on
[0, 1] endowed with the uniform norm

“f‘ll().l] :=max || f(x)]: xe [0, 111, feC[0,1].

Let (~,) be a given sequence of real numbers, ve N,

0 rg<iy< o, lim 4,= .
Given such a sequence (4,) and a number ne N, let [],(4,) denote the
space of Miintz polynomials

H’I(Aﬂ’\‘) ::{ Z

Considering the problem of the approximation of functions f e C[0, 1] by
Miintz polynomials, the classical Miintz theorem states (cf. [127]) that
[1.(4,)1s dense in C[0, 11iff 3 | (1/2,)=2c and 4,=0.

a‘x“:a\.eR} (1)

[¢]
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The question of how fast for functions /'€ C[0, 1] the minimal deviation

pn(f; (;“v)v [O’ l]) = min {”fh pn” [().1]: Pn€E HH(}"\‘)} (2)

can decrease to zero if n tends to infinity has been studied by many authors
(cf, e.g, [2, 4, 5 8, 13]). In the special case of approximation by usual
polynomials the well-known theorem of Jackson (cf. [6]) ensures that the
order of approximation will increase with the smoothness of the function
being approximated. But the following example shows that such a relation
no longer holds in the general case.

For the approximation of f(x)=x by even polynomials, ic., 4, =2v,
ve N, with a simple transformation we find

pu(x, (200, [0, 1]) = po (> (v), [0,1]),  neN.

—

But the minimal deviation p,,(V/,;, (v), [0, 17) in approximating g(x) =/ x
on [0, 1] by usual polynomials is of order 1/n (cf. G. Meinardus [117]).
Thus we have

Pl (20), [o,m:o(%) a5 no .

A better rate of convergence for the approximation by Mintz
polynomials from [],(4,) can be expected if we consider the approximation
of functions given by means of a series

f(z)= Z e,z . eR.
v=10

Such series will be called Miintz series. Here in general, = is an element of
the Riemann surface of the logarithm denoted by C,,,. The approximation
of such Miintz series by polynomials from [7,(4,) on [0, 1] can be regar-
ded as the generalization of the approximation of holomorphic functions
by usual polynomials on a real interval. The latter was treated by Bernstein
[3]. In the following we will prove at least qualitatively for the
approximation by Miintz polynomials statements analogous to the well-
known theorems of Bernstein (cf. Meinardus [11, p. 91f]).
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2. UpPPER BOUNDS FOR THE MINIMAL DEVIATION

In this section we obtain upper bounds for the minimal deviation
P (A% [0, 1]) (el (2)) in approximating Miintz series

LS}

(-)= Z ¢, 2", o, €R, (
v A

by Miintz polynomials from [],(~.) on the interval [0, 1]. Again (.} is a
sequence of positive real numbers 4., ve N,
O0K<ig<a, < . lim 4,= ». (4)

We get very general estimates for p, (/. (~.). [0, 1]) by assuming that the
Miintz serics {3) 1s convergent for a == R > 1. In this case 1t follows from
results on Dirichlet series (cf. [15. p.355]) that the function [ is
holomorphic in the domain K, := {ze €, [Z| <R}

THEOREM 1. Suppose that with a sequence (4,) satisfying (&) the Mintz
series

()= Z .o e R,
¥ 8}

is mnvwgem Jor u z=R>1. Then with the partial sums s,, s (x):=
D0 _ope Xt nelN, and a constant A not depending on n the following
inequality holds:

pn‘/ [O 1] r:!\[\)]]SAR /”, ”EN~ (5)

Proof. We define

"

B,:=)Y ¢, R" '—Zb nelN,

v 0

ie., b, :=c R™ veN. By assumption it follows that |B,|< B for all ne N
and with the aid of partial Abel summation (cf. [15]) we get

£ £ o)

vyl vt

i

i
o1~
fes

.
P
x| =
N
\
/"—\u
x| =
R
——
\
—
x|~
- —
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for all x, 0 <x<R. Thus

pn(./; (;"')’ [O? 1:])< Hf‘—SnH f0.1]

. A
= max .
xe[0.1]

¢, X

v

v=un+1

o3 565
G

and with A4 :=2B the assertion is proved.
An inequality similar to (5) is obtained more simply by assuming
Ao —A.2d>0, veN, for the sequence (4,).

THEOREM 2. Suppose that with a sequence (4) satisfying A,,, — 4. =
d>0, ve N, the Miintz series

is convergent for a z= R> 1. Then with the partial sums s,(x)=3"_,c.x"
and a constant A the inequality
P fs (), [0 AN S =5, oy S AR~ (6)

holds for all ne N,

Proof. Since the Miintz series f'is convergent for z = R > | there exists a
constant M such that |¢,R*| <M or |c,|< MR * for all veN. It now
follows that

Pl fo ), L0 TN f =5l o= max | Y exn

xe [0.1]

I
ven4l

v

£a x
< X lelsM ) R~
ve=n+ 1 ve=n+ 1

gMR Apl Z R/A.,,<| Ay

yv=n+1

d
SMR—L,,,I Z R vd
v=10

=M R,

RI—1
Setting 4 := M(RY/(R“— 1)) leads to (6).
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3. BounDs FOR MUNTZ POLYNOMIALS

In order to prove the converse of Theorem | or Theorem 2 we need
estimates for the absolute value |p,(z)|. zeC,,,. of a Miintz polynomial
p(z)=2"_ya,z7 if only a bound [|p,!o,;<1 on the interval [0, 1] is
given. Such estimates are obtained by considering the following question
asked for the first time by Schwartz in [16].

ProBLEM. How large can the values |a{”'|, k=0(1)n, neN, of a
polynomial

palx)=3 a"x“el],(4)

v=1{(

be at most if | p,[o1<1?
An equivalent formulation is: How large are the values

(1)
N(k, n; 4.) = max et (7

e L nla) ‘1.17/1H [0.1]
pw £ 0

for k<n; k,neN?
With estimates for the values N(k, n; 4,) we easily find upper bounds for
the values |p,(z)l. z€ C,,,. of Miintz polynomials p,.

LEMMA 1. Suppose that the polynomial p, e 1,(4.), ne N,
"
pax)=Y a3
k=0
satisfies | p,llpo.y < P with a constant P. Then for all ze C,,

PSP Y Nk nidy) =) (8)

k=0

Proof.  Since | p,l o1, <P we have by (7)

fa, ] fa,| y
— <————< Nk, n; £,)
P HPnHmu

or

la )l < PNk, n; 7)), k=0(1)n.
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Hence for any e C,

Ipn(:)lg Z Jal\'l r:|ZA<P Z N(k#nv /J“\')‘:’;VA'
k=0 k=0
In the following we seek to obtain estimates for the values N{k, n: 4,).
Let p'*(4,), k<n, denote the minimal dev1at10n in approxxmatmg the
function x* by polynomials from the space [, (4,)\span(x*),

(9)

‘ ‘\
pAI(A,) :==min “.\"“ — > ax”|
o v O Croa

Ve k

There 1s an interesting connection between the number N(k, n; A,) and the
minimum deviation p*'(4,) stated in:

LEMMA 2. Let (/" ) be a /'i\ed sequence (4). For all ne N the numbers

Nk, n; ), ptRAL) (ef ( )) satisfy
Nk, n; 4)= : k=0(1) (10)
N(k.n; 4, rm = n.

Proof. For fixed ne N let

pilx)= 3% alx k=0()n.
v 0
vFk

be polynomials which best approximate the functions XM ie., pt(A) =
f x4 — Pillio.17- From definition (7) we have

——— < N(k.n: £,), (= .
) Nk, n; 4,) k=0(1)n (11)

On the other hand for any polynomial ¢, (x)=>7"_,b"x*e[],(4,) i
follows that

“an [0.1] > HV i

[hen] ‘l’k”[().1]:/’f/"}(/ﬂ.‘,)

or
1 12
L e
PAA) " gl ooy

64045 1-3
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Consequently
1 >
pflk)(;“\') -

must hold. This together with (11) yields (10).
For the special case of the sequence (4,) with 4, =v, ve N, the numbers
N(k, n; A,) have been given by Bernstein (cf. [3, p. 28f]):

Nk, n; 4,)

52 an+k—1)

N(k,n; 4.} = AT

Schwartz has treated the general case with help of functional-analytical
methods. He determined in many cases the asymptotic behaviour of the
quantity N(k, n; 4,) for fixed ke N, n - .

With the help of Eq. (10} we now obtain estimates for the numbers
N(k, n; 4,) much more simply:

LEMMA 3. Let (4,) be a sequence of numbers O < Ag< 4, < . Then the
Jfollowing inequalities hold for all k,ne N; k <n:

I nh = Ay 1A, — |

—————<pi)< [ =—= (12)
N Z/A + 1 ‘1]0 Ay AL+ 1 \1:[0 A+ Ay
vk vEk
resp.
At A A, +/A+l
P Nk A <20+ [ AT 13
NG =™ vt Tr=m
vtk 5)6/\
Proof. For feC[0,1] let | /]|, be the L,-norm,
ol 172
nfnz::<0 fz(x)dX) :
Y0
With arbitrary coefficients ¢, € R we estimate
f h XM Z a,x™ )
v=0 ol

v£E K \#/\

Choosing numbers a, such that

P4, :h Z a,x™

v=0 il
vFE K

[0.1]
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the left side of (12) follows immediately by using the identity (cf. [1, p. 217])

N I A
min |x*— ) o.x*| = | _ fl (14)
%y \ v=10 [I2 N 2;vk+1 yv,()lv+/*k+1

[y vk

valid for 4,> —1. In order to get the upper bound for p!¥'(4,) (cf. [5]),
with an arbltrary ﬁxed a>0 weput i,=ad,, v=0(1)n

Let us first assume 4, >0. Then with any numbers b, R the Cauchy-
Schwarz inequality yields

12
12 o+ 12
X -~ 3 box

v 0
v#EK

1 \ ) # -’
= ‘(/}k+—> [ (t/“ =y e d” ‘-) dt
2 Y v=0
vk
1 . 1 n 2 1/2
<<[fk+§> V/x<f (r/’* R N L "’2> dt) (15)
Y0 v=0

vEL

for xe [0, 1], where we set

h(f.+3)

:—/;A—‘:%—, v:O(l)n,v;ék.

Minimizing the right side of (15) by an appropriate choice of numbers ¢,
e, b,, v=0(1)n, vk, we see from (14) that

1 1 B, —
(- 3, 4 16
pn ﬁ\ ([ ) /2'8k ‘1_[ [} ﬂ}‘ ( )

vk

Since f§, = a4, we have with any numbers a,

n 7 &
Z a\‘)(f/w‘

v=0

”
Z a,x"

y o=}

[o.11] [0,1]

and therefore p*(B,)=p'F(4,). Setting o« = 1/24, we find

noA— A
P < [ (17)

o At Ay
v#k

If 4,=0 we begin the summation in {(15) only with v=1 and the above
estimates remain valid for keN, 0<k<n If 1,=0 and k=0, using
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x*=0, v=1(1)n, for x=0 we get p®(4i,)=1, neN, and (12) is proved.
Relation (10) together with (12) leads to (13).

Remark 1. Equality (10) stays true if we consider the problem in the
norms

1, =(J e rectony

1< p < oo. Here we are interested in the numbers

]

N, (k, n;2,) = max
€ TTalA) “ pn“ P

pn #E 0

with polynomials p,(x)=2317%_,ay'x* from [],(4,) (cf. (1)). Estimates
analogous to those in the proof of Lemma 3 provide inequalities similar to
(12) and (13).

For later purposes we need:

LemMa 4. Suppose that the numbers i, veN, of the sequence (4,)
satisfy

O<d<iy, —1 <D< x, ve N, (18)

with constants d, D. Then for all k, ne N, k < n, we have

U
I'IJ‘

(!

Nk, n; A )< DQ2n+1) (D)”
(19)
D(2n+1) (

where | is the smallest natural number { = (1 + 24,)/D.

Proof. Let I be the smallest number /e N with /> (1 + 2,2)/D; then by
(18) we find A, <vD+ 4y, veN, |4, —4il=d|v—k|, k,veN, and con-
sequently

},V+ik+1<D(v+k)+1+2/10_v+k+(1+2/10)/DD
PRy d|v—kl| N v — k| d

Dv+k+1
ST vk
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With (13) it now follows that

1
Nk, mi 2,) <20 + 1 []A +’k+

v=0 Ay

vk
N n D(v+k+1)
<M okt [ i
2 1 DD T ==
v#k
<D(2nzﬂiliﬁﬁ.
d) kl(n—k)

This using

m+k+u~wk+n:m+k+n ( rk)n+k—1)(n—k+1)

k' (n—k)! k+1) - (k+1-1)
2A
<(2n+ 1Y g
yields
n nl/\'
Nk, n; 2)<D2n+ 1) (d) k)
Observing
nZA nln
5 < 3
(k1)?* ~(n!)?

for k <n we obtain with help of the Stirling inequality, n! > (n/e)” \/2nn,
the bound

and the assertion is completely established.
The following lemma provides an estimate for N(k, n; 2,) {cf. (7)) under
the special assumption
lim —=0 (20)

v Ay

on the sequence (4,). The approximation by Miintz polynomials with
powers x”* where the numbers 4,, ve N, satisfy (20) is considered in the
next section.
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LEMMA 5. Suppose that the sequence (7.,) satisfies
v

lim =0
)

Ay — A zd>0, ve N.

(21)

Then for any ¢ >0 there exists a constant A = A(e) such that for all k, ne N;
k<n,

R re—— " A.v+/:.+1
Nk, m; ) <24+ 1 ] f-u—‘/—l
u‘,* uk

v=0
vtk

<A (22)

Proof. We proceed by use of a method which was applied by Levinson
(cf. [10]) to determine the growth of certain entire functions. For fixed
keN, k<n, we split the product

[”1 At g+
vo 1A= A
vk

into two parts, [ [, [],

1 2

" fot At ]

= s (23)
U c=0 12, — A4l
vk
he s (3204
" Avt A+ 1
1= 11 = (24)
3 V=0 Ay Ay

A= (372

Let M, denote the number of powers A, +# 7., veN, with 4, <ii,. Then
M, has the property:
For any fixed § >0 there exists a k£, €N such that

M, <io for all k = k. (25)
Since supposing to the contrary that there exists a sequence of natural

numbers &, pe N, with lim, , , k,= o and

MA ‘
—2¢>0  forallk,
Fhy
we obtain by A, 1< 4y, <34, that for all sufficiently large &,
[ch, ] 2[ch, ] 2(ch,—1)
- = =2 -
Ateia,) 3k, 3y,

1
2_()7

2
‘735,73
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in contradiction to lim, _ ,(v/A,)=0. ([x] denotes the largest natural
number k, k<x.) Now, for i, =1 by 4, <34, and |1, — A, | =d|v—Kk]| (cf.
(21)) we get

47,
=2l

-
N
- =

I

v

4\ !
_ 1 My
(d) Al

The Stirling inequality n!> (n/e)”, neN, and the estimate []|v—k|>
([5(M, = 1)]1)? give !

(26)

N

1 2L/ 1]
H < 120 My~ 1)]-2
S lv—k| T LO/2) (M, — 1)]rRsns DT
€MA2MA
< 5
(M, —2) -

Observing

and

we deduce for k& sufficiently large

l—[ 1 <e2M‘ 7
Jlv—k| T MM 27)
Together (26) and (27) lead to
I< 4 My j Mip2 My
S\ Tap
(28)

4 M m
:<C—1e2 e 5y e 3y

Using inequality x log(1/x)< \/; for x>0 we have by (25) that

M, Ay M,
—log—< /——< /¢
L M SN Vo
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4 N M,
_ ()2 < ()(iAA log[(u‘l,’div:l
~ .
d

In view of (28), for given ¢/2 = \/5+ & log((4/d) ¢?) there exists a k, such
that for k= k_, k<n,

[1 < et RAT (29)
1

is valid. If k <k, then the numbers M, are bounded by a constant M = M,
and since

45,

4 ) M
ﬂngTg((‘[/-A)

1 1

for 2,21 we find for sufficiently large ne N in this case inequality (29) as
well. Thus we have shown that

H < Be's 2, (30)

for all 0 <k <n, ne N, with a constant B = B(z).

A similar bound for the other product []. (cf. (24)) is obtained much
more simply. By 4, >34, or 34, > 4, follows /., ~ 7, >34 and /4, + 2, + 1 <
24, for 4,> 3. Hence

— 2.
U1 [1<34]1 ﬁ <3,6"
2 2 3%
6 340N
<exp <,1 <nlf>g +log§ ﬂ,,)))‘
/'N “n

Since by (21) it follows that lim,, , , ((nlog 6)/4,)=0, for any £2>0 we
can find an n, e N such that

V2 L] gt
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holds for n > n,. This together with (30} yields inequality

— A+t ,
\/,2/%_’_] l_[ —,‘_AT‘“gA'(’“”
L =A

vt A

for all k, ne N, k <n, with a constant 4 = A(¢). In view of (13) the lemma
is completely established.

4. CONVERSE THEOREMS

The estimates for the growth of Miintz polynomials given in the
preceding section lead to the following converse theorem.

THEOREM 3. Suppose that the sequence (2.} (¢f. (4)) satisfies 0 <d<
fvs1— S D<o, veN, and that for fe C[O, 1] the bound (cf. (2))

O[O 1] A K 2, nelN,

holds with constants A and x, k > ((D}d) ¢*)" . Then there exists a function |
possessing in K, = {ze€C,,: |z| < R} with R == k/((D/d) ¢*)" an absolutely

log*
convergent Miintz reprmenlari()n

7 2
flzy=Y ¢
v 0
whose restriction to the real interval [0, 1] coincides with the given
function f.
Proof. By assumption there exist polynomials ¢, €[], (4,) with

1= qullpor <Ak i, neN.

Setting py = Go. Pn =4, — ¢, 1. 1= 1. the representation

pa

f)=qox)+ Y (g x)—q, (x)= 2 px)

n
is uniformly convergent on [0, 1]. Moreover we have

jp”('v)l < |q”('Y) 7f('\’)l + lf('\:‘) 7q” 1('\‘)|
Ak 4K )

<24k 7, neN, xe[0,1].
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Hence for the polynomials p,(x) =37 ,a/'x*e]],(4.) we get by Lemmas
1 and 4

PN < X a2l <D ipalipony ). Nkonid) 1z)%

k=0 k=0

H D N 12}
<24k Y D(2n+1)’<~](’“> [z

k=0 ¢

( DJ 22y Anod
<24D(n + 1)2n 4 1y P {ll for

-

\
o) for |z
for all ze C,,,. Observing the relation

lim (274 1) <”—1> )
P

n— 1

for p>&>0 it follows with any fixed p, ¢ >0, | <p —s<p <rk/((D/d) )"
in view of

1 a

; — g\ SN L2V
S pA)<24D ¥ (2n+1)m<ﬂ t) <p((D/d)g) >
P

K

n==H n=10

for |z| € p — ¢ that the series

JE=% pha)= 3 % = (31)

=0 n—0k=0
is uniformly convergent in the region K, ,={zeClz|<p—c¢}. The
expansion (31) of f as an absolutely convergent double sum allows a
change of summation (cf. [7]) which leads to a Miintz representation

i I3

for=Y% <Z ai”’) o

k=0 Yu=—=0

absolutely convergent in K The assertion of the theorem now follows

P

by considering the limit p — & — x/((D/d) e*)"“.

Remark 2. The previous theorem does not provide the exact converse
of Theorem 2. One reason is that the bounds in Theorem 2 obtained with
help of the partial sums are not optimal in general. But taking account of
the knowledge of the given sequence (Z,) we can sharpen the estimates in
Section 3 leading to the converse Theorem 3 (cf. (19)) and the bound in
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Theorem 2 for the approximation of Miintz series f(x)=237_, ¢, x" could
be improved by evaluating the right side of the inequality

1

Pl A L0 IS Y Tl padx™ (4, [0, 1]).

oo+l

For a certain class of sequences (2,) {(cf. (4)) our method yields the exact
converse of Theorem 3, namely. if

. v . .
lim —=0, Avyi— A, 2d>0, ve N.

v
Vo 7 /.‘

THEOREM 4.  Suppose that the sequence (2.} satisfies

.V
lim —=0
¥ > s /\,\‘

and (32)

Aoy — A zd>0. ve N,
If for a function e C[0, 1] the bound
pulfs (4. [0.1])<B-R 1, neN,

holds with constants B and R > 1, then there exists a function [ possessing in

Kpi={2eC |zl < R} an absolutely convergent Miniz representation

fiz)= Z ¢, b

whose restriction to the real interval [0, 1] coincides with the given
function f.

Proof. The proof parallels the proof of Theorem 3. For the Miintz
polynomials p, €[],(2.). neN, of the expansion

flx)= Z p,(x)
=10

we again have |[p,l o, <2BR . By Lemmas 1 and 5 it follows that for
any fixed ¢ >0

n

1PN < Y Nikony 2,) 1217

k=0
L for
R™ ||z} for

B

ITETY

<2BA(e)n+ 1) e

VoA
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is valid for all ze Cy,,. Let us choose p, &£ >0 such that, p > 1, | <pe"<R.
From inequality

oo\
Z ‘pn 282 n+1 <1§> for ‘[:'|<p

o=y no=4

we deduce immediately the uniform convergence of the series

()= pAzy=Y Y ay:zi= Z (Z a "’) o {33)
ko)

=) n .o Ok=0 n=10 /

in the domain K, = {zeC,,,: |z| <p]. Again the change of summation on
the right side of (33) is allowed. Letting ¢ — 0 and p — R under the restric-
tion pe” < R yields the assertion of the theorem.

Suppose that with a sequence satlsfymg (32) we are given a series f{z
Yr ez ¢, eR, convergent for a = R> 1 but divergent for any z w1th
|z| > R. Then Theorem 2 assures with the partial sums s, (x)=3>"_,c,x™" a
rate of convergence

| /=5, <AR ', neN.

But by Theorem 4 cven with the best approximations p,e[],(4,), no
bound

Pl L0 LDy = [ f = polljor 4 L neN,

is possible with a constant x > R. This means that for such Miintz series
the approximation by partial sums essentially provides an optimal rate of
convergence.

Remark 3. We note that the condition lim, _ , (v/4,)=0 in Theorem 4
is different from condition > /_,(1/4,) < x which is ChdrdCtCrlSUC for the
density of Miintz polynomials in C[0, 1 ]. The sequence (4,) with ~,=
viog(v+ 1), veN. presents an example of a sequence satisfying
hm, , (v/A)=0but Y/ (1/4, )= (cf [7])

Remark 4. The statements of Theorems 2 and 4 can be seen in connec-
tion with the following generalization of the Fabry gap theorem (cf. [14]):

With a sequence (4,) satisfying lim, . (v/i,}=0, A, —4,2d>0,
veN, let a series f(z) =X, ¢,z be given. Then either f'is convergent on
the whole surface C,,, or the series possesses a bounded “circle” {zeCy
|z} = R} of convergence and a holomorphic continuation outside this “cir-
cle” docs not cxist.
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5. THE APPROXIMATION OF AN ENTIRE MUNTZ SERIES

In this section we consider the approximation of functions f allowing a
representation

=Y e el
convergent on the whole surface C,,,. We will call such functions an entire

Miintz series, and give the following definitions:

(a) An entire Miintz series is said to be of finite order if there exists a
o, 0< o < oo, such that with constants A4, b

| f(z)) < A4e”"  forall zeCy,,. (34)

(b) The number a(f),

o(f) :=inl{o: o satisfies (34)} (35)

is called the order (of growth) of the function f.

We generalize the following two theorems concerning the approximation
of usual entire functions by usual polynomials. These theorems have been
proved by Varga [17] (cf also Bernstein [3, p. 37]).

THEOREM 5. Let f be an entire function of finite order o which is real for
real values. Then for any ¢>0 there exists a constant A = A(e), such that

o (L [0, 1)< A-n "7 neN, (36)

THEOREM 6. Let fe C[0, 1] be given. Suppose for any ¢ > 0 there exists
a constant A= A(e) such that with a o, 0< o<, (36) holds. Then there
exists an entire function [ of order o(f) <o, which coincides for real values
xe [0, 1] with the given function f.

The next lemma describes the connection between the order of an entire
Miintz series f(z)=37 ,a,z” and the asymptotic behaviour of the coef-
ficients a,, if v— oc. It generalizes a well-known result for usual entire
functions (cf. Levin [9]).

LEMMA 6. Let (4,) be a sequence (4) of positive numbers 4., satisfving

Ay

og v

>d>0, v=2, velN. (37)
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Suppose [ is an entive Miintz series

flz)y=Y aczn
ve-0

of finite order. Then for the order a( ) of the function | relation

— A dog 4,

m ——
v log(Ha )
holds.
Proof. Let o be the number
~ 4, log 4,
lim ———=g¢

v o log(1/]a )

Then for any ¢ >0 there exists a v, e N such that for all vz v ,

have

4, log 4,

Consequently with a constant y =y(¢) for all ve N

| <y d,

N

holds. Hence with any -=re'” e C,,, the estimate

.

\f(:” < Z .a\'| ’/vg-,,. Z A

v

1s valid. Now we determine the order of the series

with a number %, 0 <a < oc. We set

R:={(cer)' ™.

where ¢, 0 < ¢ < o, satisfies

=a(f)

= L <o+¢ or — > preto b
log(1/]a,l) la,|

(38)

(39)

ve N, we

(40)

(41)

(43)
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([x], xe R, denotes the largest natural number ., £ < x.) Such a number ¢
exists. Indeed, from relation a'°8* =v'2¢ y 4> 0: it follows that the series
S r (1/a'®") is convergent for a > e. Thus with ¢ := (2¢)" we find by (37)
(1/¢)™ < (1/2¢)°®" and the series (43) is shown to be convergent. Moreover

we note

R<(er)! "< R+1

by (42). Now we write for the series (41)

e i 2

Tm= Lot I g
= 1/‘ oy SR+1A~:/:“ Ay R+ 1 AI}\

By (44) we have for 4,> R+ 1

ri\, < r )/‘,\, 1 N
— < — <t—-1] .
A (R+1)* c

Thus using (43) it follows that

Ay

. ¥
lim Y —=0
Rt Ry My

Furthermore we obtain for r> 1

P 1
(R+1)
Z I]az/’.vgr Z /1/\
AR+ Y AR+ 1
Lol

{R+ 1)1
<e )Ogrz

ez
v=0 A v

By (37) A** > (d log v)** and for ve N large enough (d log v)* >

n view of (43) we have shown the convergence

8
T o<k

This together with (44) yields the inequality

v

Rlogr+logr
< Be

)

AR+ 1

7 0hy
i

'l )og r 4 log r
< Be & e’ r>=1.

(44)

(45)

(46)

(47)

¢*. Hence
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For any ¢ >0 relation r'*log r +log r <r'*** holds for large r>0. Thus
to any ¢ >0 there exists a constant b = h(¢), such that

™ log r+ log r < br! r> 0.

Applying (46) we conclude from (45) that

Vs N
4 pptd bt .
Z — < Ae , r> (0,

[ Y

with a constant 4 = A(¢). Setting 1/a =0 + ¢ it follows from (41) and (40)
S <7470 e Qs
where ¢ >0 is arbitrary. Remembering (39) we have established inequality

— A dog 4,
o)< Tim A log 4,

— 48
Vo lOg(l/"\a“l) ( )

for the order o(f) of the Miintz series f.
Now suppose for any ¢>0 there exist numbers A= A(e), h=bh(e),
A, b>0, such that with a o, 0 <o < >, relation

| fz) < de” " (49)

holds for all ze C,,,. From Hadamard’s formula,

| 7
a.= lim — dis)ye™

dr, e s> 0,.
1 2T ‘

ve N, valid for the Dirichlet series
dis)= Z a,e A s=ag+iteC,

v—0

which are absolutely convergent for re s 2 o, (cf. [15]) it follows with the
transformation - =¢ *, z€C,,,. for the Miintz series

fz)=73, a,= (50)
[t
absolutely convergent in K= {z€C,:[z| <R}, R>0, -=re”, that

o )
fz)z “dy, 0O<|z]<R. (51)
7
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Moreover an analogous result for Dirichlet series (cf. [15]) leads to
inequality

— logv
O<logr.—logr,< lim o8 ?

v A

(52)

for the radius r,. of convergence and the radius r, of absolute convergence
of the series (50). By (37), A/logv=d>0, veN, we get O0<logr, —
log r, < 1/d < oo and consequently the entire Miintz series (50) is absolutely
convergent on the whole surface C,,,. Using (49) and (51) we find for all
veN: r>0, [zl =r;

e eh,nw,

lim L f(z)z ’“d(p)é/!

T = 2T- T

(53)

la,| =

’./l\ ’

Now the function ¢, (r)=¢""""/r*, r > 0, takes its absolute minimum at r =
(A,/b(g 4+ )" ) This can be seen from

d (,/vrnw g+ L+, .
E%(r): o (hlo+e)r )
()hr”‘l » A
= oy (blote)r7t =),
Thus by (53)
la ’ < A ()/Z\,'(rr+é:) iy 6’[)(0’-}-8) Avilo +8)
SV -
or
l 1 ) A+ £)
— | —
il k)
and
logl?z—l>10g2+a+r (log A, —log(eb(o + ¢))).

Hence we can deduce that for any &> 0 inequality

Ay

—log 4,
o+ 2¢ 08 4.

=

1
log —
la,|

640-45 1-4
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or

A log 4,

o+
log(1/la,l)

holds if v is chosen sufficiently large. Consequently

— A log i,
o= lm ————
v oo log(1/a,))

and in view of (48) the assertion of the lemma is established. An upper
bound for the minimal deviation in approximating an entirc Miintz series
of finite order by Miintz polynomials is given in:

THEOREM 7. Let (4,) be a sequence (4) satisfving

Ay
" >d>0, v=2.

log v

Suppose the entire Miintz series
o i
./V(Z) = Z C\'Z/w’ Cy € Ra
v=20
is of order o(f)=0, 0< g <. Then for any ¢>0 there exists a constant

A= A(ge), such that

pulfs G OIS =8l oy s A -2, 707

holds with the partial sums s,(x)=3"_,c.x" for all ne N.

Proof. Since

= A, log 4,
m ————=g0
v log(1/ie,])

by Lemma 6 we have for arbitrary fixed ¢ >0

A, log 4,

2 <o+4¢ or le,| <A Aiare
log(1/c,]) ' ’

if v is large enough. Hence there exists a 7 = y(¢) >0, such that

le,| Syd, Ao e, ve N.
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Thus we get with the partial sums s,, of the series f

w N
c,x™ {

I/ —sullpo.r;= max
xe[0.1] v=n+tl

(54)

L

< v Z /””—.— Aa +5)

y=n+1

In the same way asin the proof of Lemma 6 we can show the existence of a
constant ¢, 0 < ¢ < oo, satisfying

o 1 o+ i)
Y <—> < ®.
v=_0 ¢

Consequently the numbers

n 1 Ao+ e)
B, = Z (‘)
yo=(} ¢

are bounded,
B,<B, neN. (55)

By Abel’s method of summation by parts we find using (55)

s ( 1 )/}/(n+r:) x <(,>/‘,‘./ln+1:)<1>2,. o +¢)
v=j+ 1 A\’ v=n+1 /'\' ¢

v ¢ Ap O +8)
Z (*_> (B\'AB\' l)

v=n+1 4

oy
* D\ Avila + e} N Ay (G H )
. [¢ C
Z BV ((A—> B ( j > )
V= # /‘\‘ ‘/“\‘+] 7
c inila + €}
a B” <T—>
lon
¢ snilo + &) Ea ¢ AT +¢)
< - + —
. o\
( ¢ )).\,|,(a+;:))>
A

¢ snila +¢)
<2B <~) for c¢<4i,.

i

i

A

vn
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Taking account of the fact that for any ¢ >0 and fixed ¢>0

<(‘>/V,,ln+u)<<l\)/,,(n*lu
5 ~\|
A, .

holds if ne N is large enough it follows by (54) that

Pl A [0 1] < | f— SHH[(U]

< 4/ spilo o+ D)

»n

for all ne N with a constant 4 = A(s).
Under stronger hypotheses on the sequence (4,) we obtain the converse
n:

THEOREM 8. Suppose that the sequence (4,) satisfies O <d < A, | — 4, <

D<o, veN. Let fe C[0, 1] be given. Suppose for any & >0 there exists a
constant A = A(e) such that with a g, 0 <o < x, we hate
Pl (2 [0, L)< A -4 rtmn ), nelN.

. . .- . a
Then there exists an entire Muntz series .
s
f(:): Z (‘\:/V'
v 4]

of order o(f), 0<a(f)<a. ubsolutely convergent on the whole surface C
which coincides for real xc [0, 1] with the given function f.

Jog

Proof. We use the same notations as in the proof of Theorem 3. We
consider the expansion

flx)y= 3 px)
n=0

uniformly convergent for xe [0, 1 ] with polynomials p, e [],(4,). p.(x)=
S, a'x*, satisfying

] At bt 1 An Lo 4N
”Pniml]i/i((,—) +<, > )
"n Ap 1 /

1 A 1T ey
<2A<A ) nzt
/

pZ N
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By Lemmas | and 4 it follows for all zeC,,, n>1, with [:=
[(14+24,)/D+ 1] that

1 Ap 1o+l g D " ‘
lpn(:)l g 2A <A—_) Z (2” + [)[D <_j’ ()2) {:l*r.

Ay 0 [
Thus setting k := ((D/d) ¢*)"“ the bound

1

|p ) <2AD2n+ 1) prk s ( n

/.

(AT

sy 1T )
) nzl, (56)

is valid for |z| <r, r = 1. Furthermore we get for any fixed ¢ >0

] 1 sy ile k) 1 fpila 4+ 2¢)
(2I’I+/)I+]/\'/"'<—_—> <<—> (57)
/'n I Au

if ne N is large enough. Together (56) and (57) ensure the existence of a
constant £ = E(¢) such that

= 4 1 snilo+ 21) ]
)} |P,1(:)I<E<1+ ¥ <_> ,3 (58)
/

no 0 no0 /“H

for all |z] <r, r>0. Setting

1 splo 2
a,= (—) neN,
/“’n

it follows from Lemma 6 that the sum on the right side of (58) is of order

T )‘n log ;"!
im ————=0+ 2,
n— . log(1/]a,]) 7

where ¢ >0 is arbitrary. Applying a change of summation

£ X

7=3 pi)= Y (Z a[km> i

n=0 k=0 \n=0

we have shown f to be a Miintz series of order o(f), 0<a(/)<o,
absolutcly convergent on the whole surface C,,,.

Remark 5. Remembering the fact mentioned in Remark 1 that formulas
analogous to (8) and (13) hold for the problem in the L, -norm, [ < p < o,
simple modifications in the proofs of the preceding theorems show that
statements analogous to all theorems in Section 4 and 5 are valid in the
L,norms, 1 < p<x.
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Furthermore, simple transformation arguments lead to analogous results
for the problem of the approximation of functions by Miintz polynomials
in the interval [0, b] for h> 0.

6. THE APPROXIMATION OF DIRICHLET SERIES
BY DIRICHLET POLYNOMIALS

With the aid of the transformation

T

x=e resp. o= —logx

we obtain one to one correspondence between functions f(x)e C[0, 1] and
functions F(o)e C[0, oc ] by setting

fle )= Flo) resp. F(—log x)= f(x).

Moreover
1A 00y =1E) 0.5 - (59)
With
z=e s=o+itel,
s= —log |z] —iep, c=zl e el
by
Sle y=Fs),  Fl—logz)=f(z) (60)

to any function f(z) which is holomorphic in a domain GeC,,, we have
assigned a function F(s) which is holomorphic in the corresponding
domain of the C plane and vice versa. For instance, the functions

fz)=z%  Fs)=e ™, J1eC,

are corresponding under the transformation (60). Hence, all assertions in
the preceding sections concerning the approximation of Miintz series

Af(z) = Z (.“:)V\

v =10

by Miintz polynomials from [],(4,) on [0, 1] can be modified into
corresponding statements concerning the approximation of Dirichlet series

X
disy=> ce ™
v ()
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by Dirichlet polynomials from A4,(4,),

A,(% )~{Z a 0’“‘":(1‘,6[@},

v=0

on the interval [0, oc]. Hereby we have only to take into consideration
that under the transformation s= —logz the domain K;<C,,,, R>0,
Kr={zeC,, |lzI <R}, corresponds to the region H,c C,

Hy={s=o0+iteC:o> —log R}.

Similarly assertions analogous to those of Section 3 are valid for Dirichlet
polynomials

n
d,,(O'): Z asy”)() Aa

vz ()

Defining

o @i
Nik,n; 2,)= max ——t—0. k<n k.neN,
dy € Anl 2v) Hdnn [0.%.]
dy £0

it follows by (59) that 17,001 = Id, Il o, 7] with p(x)=3"_,a""'x 4 and
consequently (cf. (7))

Nk, n: 2,)= Nk, n; A,).
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